Telegram Group & Telegram Channel
This media is not supported in your browser
VIEW IN TELEGRAM
๐—ฃ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐—ถ๐˜€ (๐—ฃ๐—–๐—”)
๐—ง๐—ต๐—ฒ ๐—”๐—ฟ๐˜ ๐—ผ๐—ณ ๐—ฅ๐—ฒ๐—ฑ๐˜‚๐—ฐ๐—ถ๐—ป๐—ด ๐——๐—ถ๐—บ๐—ฒ๐—ป๐˜€๐—ถ๐—ผ๐—ป๐˜€ ๐—ช๐—ถ๐˜๐—ต๐—ผ๐˜‚๐˜ ๐—Ÿ๐—ผ๐˜€๐—ถ๐—ป๐—ด ๐—œ๐—ป๐˜€๐—ถ๐—ด๐—ต๐˜๐˜€

๐—ช๐—ต๐—ฎ๐˜ ๐—˜๐˜…๐—ฎ๐—ฐ๐˜๐—น๐˜† ๐—œ๐˜€ ๐—ฃ๐—–๐—”?
โคท ๐—ฃ๐—–๐—” is a ๐—บ๐—ฎ๐˜๐—ต๐—ฒ๐—บ๐—ฎ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐˜๐—ฒ๐—ฐ๐—ต๐—ป๐—ถ๐—พ๐˜‚๐—ฒ used to transform a ๐—ต๐—ถ๐—ด๐—ต-๐—ฑ๐—ถ๐—บ๐—ฒ๐—ป๐˜€๐—ถ๐—ผ๐—ป๐—ฎ๐—น dataset into fewer dimensions, while retaining as much ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜† (๐—ถ๐—ป๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป) as possible.
โคท Think of it as โ€œ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ดโ€ data, similar to how we reduce the size of an image without losing too much detail.

๐—ช๐—ต๐˜† ๐—จ๐˜€๐—ฒ ๐—ฃ๐—–๐—” ๐—ถ๐—ป ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€?
โคท ๐—ฆ๐—ถ๐—บ๐—ฝ๐—น๐—ถ๐—ณ๐˜† your data for ๐—ฒ๐—ฎ๐˜€๐—ถ๐—ฒ๐—ฟ ๐—ฎ๐—ป๐—ฎ๐—น๐˜†๐˜€๐—ถ๐˜€ and ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น๐—ถ๐—ป๐—ด
โคท ๐—˜๐—ป๐—ต๐—ฎ๐—ป๐—ฐ๐—ฒ machine learning models by reducing ๐—ฐ๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐—ฐ๐—ผ๐˜€๐˜
โคท ๐—ฉ๐—ถ๐˜€๐˜‚๐—ฎ๐—น๐—ถ๐˜‡๐—ฒ multi-dimensional data in 2๐—— or 3๐—— for insights
โคท ๐—™๐—ถ๐—น๐˜๐—ฒ๐—ฟ ๐—ผ๐˜‚๐˜ ๐—ป๐—ผ๐—ถ๐˜€๐—ฒ and uncover hidden patterns in your data

๐—ง๐—ต๐—ฒ ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—ผ๐—ณ ๐—ฃ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€
โคท The ๐—ณ๐—ถ๐—ฟ๐˜€๐˜ ๐—ฝ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜ is the direction in which the data varies the most.
โคท Each subsequent component represents the ๐—ป๐—ฒ๐˜…๐˜ ๐—ต๐—ถ๐—ด๐—ต๐—ฒ๐˜€๐˜ ๐—ฟ๐—ฎ๐˜๐—ฒ of variance, but is ๐—ผ๐—ฟ๐˜๐—ต๐—ผ๐—ด๐—ผ๐—ป๐—ฎ๐—น (๐˜‚๐—ป๐—ฐ๐—ผ๐—ฟ๐—ฟ๐—ฒ๐—น๐—ฎ๐˜๐—ฒ๐—ฑ) to the previous one.
โคท The challenge is selecting how many components to keep based on the ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ป๐—ฐ๐—ฒ they explain.

๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ

1: ๐—–๐˜‚๐˜€๐˜๐—ผ๐—บ๐—ฒ๐—ฟ ๐—ฆ๐—ฒ๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Imagine youโ€™re working on a project to ๐˜€๐—ฒ๐—ด๐—บ๐—ฒ๐—ป๐˜ customers for a marketing campaign, with data on spending habits, age, income, and location.
โคท Using ๐—ฃ๐—–๐—”, you can reduce these four variables into just ๐˜๐˜„๐—ผ ๐—ฝ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€ that retain 90% of the variance.
โคท These two new components can then be used for ๐—ธ-๐—บ๐—ฒ๐—ฎ๐—ป๐˜€ clustering to identify distinct customer groups without dealing with the complexity of all the original variables.

๐—ง๐—ต๐—ฒ ๐—ฃ๐—–๐—” ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€ โ€” ๐—ฆ๐˜๐—ฒ๐—ฝ-๐—•๐˜†-๐—ฆ๐˜๐—ฒ๐—ฝ
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿญ: ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐˜๐—ฎ๐—ป๐—ฑ๐—ฎ๐—ฟ๐—ฑ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Ensure your data is on the same scale (e.g., mean = 0, variance = 1).
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฎ: ๐—–๐—ผ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ป๐—ฐ๐—ฒ ๐— ๐—ฎ๐˜๐—ฟ๐—ถ๐˜…
Calculate how features are correlated.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฏ: ๐—˜๐—ถ๐—ด๐—ฒ๐—ป ๐——๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป
Compute the eigenvectors and eigenvalues to determine the principal components.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฐ: ๐—ฆ๐—ฒ๐—น๐—ฒ๐—ฐ๐˜ ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€
Choose the top-k components based on the explained variance ratio.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฑ: ๐——๐—ฎ๐˜๐—ฎ ๐—ง๐—ฟ๐—ฎ๐—ป๐˜€๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Transform your data onto the new ๐—ฃ๐—–๐—” space with fewer dimensions.

๐—ช๐—ต๐—ฒ๐—ป ๐—ก๐—ผ๐˜ ๐˜๐—ผ ๐—จ๐˜€๐—ฒ ๐—ฃ๐—–๐—”
โคท ๐—ฃ๐—–๐—” is not suitable when the dataset contains ๐—ป๐—ผ๐—ป-๐—น๐—ถ๐—ป๐—ฒ๐—ฎ๐—ฟ ๐—ฟ๐—ฒ๐—น๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€๐—ต๐—ถ๐—ฝ๐˜€ or ๐—ต๐—ถ๐—ด๐—ต๐—น๐˜† ๐˜€๐—ธ๐—ฒ๐˜„๐—ฒ๐—ฑ ๐—ฑ๐—ฎ๐˜๐—ฎ.
โคท For non-linear data, consider ๐—ง-๐—ฆ๐—ก๐—˜ or ๐—ฎ๐˜‚๐˜๐—ผ๐—ฒ๐—ป๐—ฐ๐—ผ๐—ฑ๐—ฒ๐—ฟ๐˜€ instead.

https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A ๐Ÿ“ฑ
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/CodeProgrammer/3769
Create:
Last Update:

๐—ฃ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐—ถ๐˜€ (๐—ฃ๐—–๐—”)
๐—ง๐—ต๐—ฒ ๐—”๐—ฟ๐˜ ๐—ผ๐—ณ ๐—ฅ๐—ฒ๐—ฑ๐˜‚๐—ฐ๐—ถ๐—ป๐—ด ๐——๐—ถ๐—บ๐—ฒ๐—ป๐˜€๐—ถ๐—ผ๐—ป๐˜€ ๐—ช๐—ถ๐˜๐—ต๐—ผ๐˜‚๐˜ ๐—Ÿ๐—ผ๐˜€๐—ถ๐—ป๐—ด ๐—œ๐—ป๐˜€๐—ถ๐—ด๐—ต๐˜๐˜€

๐—ช๐—ต๐—ฎ๐˜ ๐—˜๐˜…๐—ฎ๐—ฐ๐˜๐—น๐˜† ๐—œ๐˜€ ๐—ฃ๐—–๐—”?
โคท ๐—ฃ๐—–๐—” is a ๐—บ๐—ฎ๐˜๐—ต๐—ฒ๐—บ๐—ฎ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐˜๐—ฒ๐—ฐ๐—ต๐—ป๐—ถ๐—พ๐˜‚๐—ฒ used to transform a ๐—ต๐—ถ๐—ด๐—ต-๐—ฑ๐—ถ๐—บ๐—ฒ๐—ป๐˜€๐—ถ๐—ผ๐—ป๐—ฎ๐—น dataset into fewer dimensions, while retaining as much ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜† (๐—ถ๐—ป๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป) as possible.
โคท Think of it as โ€œ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ดโ€ data, similar to how we reduce the size of an image without losing too much detail.

๐—ช๐—ต๐˜† ๐—จ๐˜€๐—ฒ ๐—ฃ๐—–๐—” ๐—ถ๐—ป ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€?
โคท ๐—ฆ๐—ถ๐—บ๐—ฝ๐—น๐—ถ๐—ณ๐˜† your data for ๐—ฒ๐—ฎ๐˜€๐—ถ๐—ฒ๐—ฟ ๐—ฎ๐—ป๐—ฎ๐—น๐˜†๐˜€๐—ถ๐˜€ and ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น๐—ถ๐—ป๐—ด
โคท ๐—˜๐—ป๐—ต๐—ฎ๐—ป๐—ฐ๐—ฒ machine learning models by reducing ๐—ฐ๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐—ฐ๐—ผ๐˜€๐˜
โคท ๐—ฉ๐—ถ๐˜€๐˜‚๐—ฎ๐—น๐—ถ๐˜‡๐—ฒ multi-dimensional data in 2๐—— or 3๐—— for insights
โคท ๐—™๐—ถ๐—น๐˜๐—ฒ๐—ฟ ๐—ผ๐˜‚๐˜ ๐—ป๐—ผ๐—ถ๐˜€๐—ฒ and uncover hidden patterns in your data

๐—ง๐—ต๐—ฒ ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—ผ๐—ณ ๐—ฃ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€
โคท The ๐—ณ๐—ถ๐—ฟ๐˜€๐˜ ๐—ฝ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜ is the direction in which the data varies the most.
โคท Each subsequent component represents the ๐—ป๐—ฒ๐˜…๐˜ ๐—ต๐—ถ๐—ด๐—ต๐—ฒ๐˜€๐˜ ๐—ฟ๐—ฎ๐˜๐—ฒ of variance, but is ๐—ผ๐—ฟ๐˜๐—ต๐—ผ๐—ด๐—ผ๐—ป๐—ฎ๐—น (๐˜‚๐—ป๐—ฐ๐—ผ๐—ฟ๐—ฟ๐—ฒ๐—น๐—ฎ๐˜๐—ฒ๐—ฑ) to the previous one.
โคท The challenge is selecting how many components to keep based on the ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ป๐—ฐ๐—ฒ they explain.

๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ

1: ๐—–๐˜‚๐˜€๐˜๐—ผ๐—บ๐—ฒ๐—ฟ ๐—ฆ๐—ฒ๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Imagine youโ€™re working on a project to ๐˜€๐—ฒ๐—ด๐—บ๐—ฒ๐—ป๐˜ customers for a marketing campaign, with data on spending habits, age, income, and location.
โคท Using ๐—ฃ๐—–๐—”, you can reduce these four variables into just ๐˜๐˜„๐—ผ ๐—ฝ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€ that retain 90% of the variance.
โคท These two new components can then be used for ๐—ธ-๐—บ๐—ฒ๐—ฎ๐—ป๐˜€ clustering to identify distinct customer groups without dealing with the complexity of all the original variables.

๐—ง๐—ต๐—ฒ ๐—ฃ๐—–๐—” ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€ โ€” ๐—ฆ๐˜๐—ฒ๐—ฝ-๐—•๐˜†-๐—ฆ๐˜๐—ฒ๐—ฝ
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿญ: ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐˜๐—ฎ๐—ป๐—ฑ๐—ฎ๐—ฟ๐—ฑ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Ensure your data is on the same scale (e.g., mean = 0, variance = 1).
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฎ: ๐—–๐—ผ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ป๐—ฐ๐—ฒ ๐— ๐—ฎ๐˜๐—ฟ๐—ถ๐˜…
Calculate how features are correlated.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฏ: ๐—˜๐—ถ๐—ด๐—ฒ๐—ป ๐——๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป
Compute the eigenvectors and eigenvalues to determine the principal components.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฐ: ๐—ฆ๐—ฒ๐—น๐—ฒ๐—ฐ๐˜ ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€
Choose the top-k components based on the explained variance ratio.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฑ: ๐——๐—ฎ๐˜๐—ฎ ๐—ง๐—ฟ๐—ฎ๐—ป๐˜€๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Transform your data onto the new ๐—ฃ๐—–๐—” space with fewer dimensions.

๐—ช๐—ต๐—ฒ๐—ป ๐—ก๐—ผ๐˜ ๐˜๐—ผ ๐—จ๐˜€๐—ฒ ๐—ฃ๐—–๐—”
โคท ๐—ฃ๐—–๐—” is not suitable when the dataset contains ๐—ป๐—ผ๐—ป-๐—น๐—ถ๐—ป๐—ฒ๐—ฎ๐—ฟ ๐—ฟ๐—ฒ๐—น๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€๐—ต๐—ถ๐—ฝ๐˜€ or ๐—ต๐—ถ๐—ด๐—ต๐—น๐˜† ๐˜€๐—ธ๐—ฒ๐˜„๐—ฒ๐—ฑ ๐—ฑ๐—ฎ๐˜๐—ฎ.
โคท For non-linear data, consider ๐—ง-๐—ฆ๐—ก๐—˜ or ๐—ฎ๐˜‚๐˜๐—ผ๐—ฒ๐—ป๐—ฐ๐—ผ๐—ฑ๐—ฒ๐—ฟ๐˜€ instead.

https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A ๐Ÿ“ฑ

BY Python | Machine Learning | Coding | R


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/CodeProgrammer/3769

View MORE
Open in Telegram


Python | Machine Learning | Coding | R Telegram | DID YOU KNOW?

Date: |

Chinaโ€™s stock markets are some of the largest in the world, with total market capitalization reaching RMB 79 trillion (US$12.2 trillion) in 2020. Chinaโ€™s stock markets are seen as a crucial tool for driving economic growth, in particular for financing the countryโ€™s rapidly growing high-tech sectors.Although traditionally closed off to overseas investors, Chinaโ€™s financial markets have gradually been loosening restrictions over the past couple of decades. At the same time, reforms have sought to make it easier for Chinese companies to list on onshore stock exchanges, and new programs have been launched in attempts to lure some of Chinaโ€™s most coveted overseas-listed companies back to the country.

Python | Machine Learning | Coding | R from es


Telegram Python | Machine Learning | Coding | R
FROM USA